Visual scene real-time analysis for Intelligent Vehicles:
Objects visual detection and recognition / categorization

Pr. Fabien MOUTARDE
Center for Robotics,
MINES ParisTech
PSL Université Paris

Fabien.Moutarde@mines-paristech.fr
http://people.mines-paristech.fr/fabien.moutarde

Outline

• Motivations: ADAS and autonomous driving
• Objects visual DETECTION
• Objects visual RECOGNITION:
 • usual features used
 • Machine-Learning algorithms
• Traffic Sign Detection and Recognition (TSR)
• Cars & Pedestrians detection with adaBoost
A self-driving car is a mobile robot!

ROBOTIC LOOP

- **Perception**
- **Reasoning**
- **Decision**
- **Action**

« Ingredients » of an Autonomous Vehicle

Robot ➔ perceive + reason + act

An Autonomous Vehicle therefore needs:

- Sensors
- « Intelligents » algorithms
 - for perception
 - for trajectory planning
 - for control
- Embedded calculator(s)
- Actuators (« drive by wire »)
Sensors for Autonomous Vehicles

- **Classic cameras** \([\text{range } \sim 500m, \text{ wide field of view}]\)

- **Radar(s)** \([\text{range } \sim 200m, \text{ narrow field of view}]\)

- **LIDAR** \([\text{range } \sim 100m, \text{ FoV from } \sim 60^\circ \text{ to } 360^\circ]\)

- **Ultrasound, etc…**

Examples of visual objects detection & recognition for IV

- **Traffic Sign detection and Recognition** (TSR)

- **Traffic Lights Detection**

- **Cars and pedestrians visual detection**

All these videos = research conducted @ center for Robotics of MINES ParisTech
Partial, total or conditional autonomy?

The 5 « automation levels » for vehicles defined by SAE

<table>
<thead>
<tr>
<th>NIVEAU 0</th>
<th>NIVEAU 1</th>
<th>NIVEAU 2</th>
<th>NIVEAU 3</th>
<th>NIVEAU 4</th>
<th>NIVEAU 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>conducteur seul</td>
<td>accompagné</td>
<td>assisté</td>
<td>guidé</td>
<td>passif</td>
<td>100% autonome</td>
</tr>
</tbody>
</table>

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019

What are ADAS?

Acronym of Advanced Driving Assistance Systems = Intelligent functions for safer and/or easier driving

- **Warning or Information**
 - Lane Departure Warning (LDW)
 - Forward Collision Warning (FCW)
 - Pedestrian Collision Warning
 - Blind Spot Monitoring
 - Speed Limit Assistant
 - Driver Attention Warning
 - Night vision
 - ...

Objects visual detection&recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL,Sept.2019
Active ADAS

- **Active systems** (ADAS that ACT on the vehicle, rather than just only warn the driver)
 - Adaptive Cruise Control (ACC)
 - Lane Keeping (LK)
 - Autonomous Emergency Braking
 - Automated Parking
 - ...

More detailed information: see for instance https://mycardoeswhat.org/

Real-time visual scene understanding

Main goal = localize and categorize "objects"

- pedestrian
- motorbike
- car
- traffic light
- traffic sign
- bicycle
- road lane

Key component for driving assistance (ADAS) & automated driving

Strong real-time constraint:
process at least ~20 frames/second
Objects to be detected and recognized

- Road lanes
- Traffic signs
- Traffic lights
- Cars, vans, trucks
- Motorbikes
- Bicycles
- Pedestrians
- etc...

Summary on MOTIVATIONS

- Intelligent functions for safer and/or easier driving are called ADAS (= Advanced Driving Assistance Systems)
- There are several different types of ADAS, such as Forward Collision Warning (FCW), Blind Spot Monitoring (BSM), Lane Keeping, Adaptive Cruise Control (ACC), Automated Parking, etc
- Many of these ADAS, and automated driving, requires real-time on-board analysis of video from cameras, in order to interpret (“understand”) the visual scene, and in particular to detect and categorize in the images objects such as: cars, pedestrians, bicycles, motorbikes, traffic signs and traffic lights
Outline

• Motivations: ADAS and autonomous driving
• Objects visual **DETECTION**
• Objects visual **RECOGNITION**:
 • usual features used
 • Machine-Learning algorithms
• Traffic Sign Detection and Recognition (TSR)
• Cars & Pedestrians detection with adaBoost

Objects visual **DETECTION**

For **objects**, visual scene analysis often performed in **TWO (or three) STEPS**:

1. Detection → Recognition → Temporal Tracking

Detection = find **WHERE in the image** are (maybe) located interesting objects

![Candidate locations for searched objects](image)

![Recognized objects](image)
Objects visual detection approaches

Visual detection can be done using:
- Template matching
- Shape cues
- Color cues
- Window scanning *with classifier*
- Keypoints
- Segmentation

Objects visual detection by TEMPLATE MATCHING

Mostly for detection of nearly invariant patterns (like **traffic signs**)

- **Principle:** compare a reference image (template) of object with all possible positions/sizes (cross-correlation)

 For each position compute a similarity measure (e.g. SAD)

 \[
 SAD(x, y) = \sum_{i=0}^{T_{\text{rows}}} \sum_{j=0}^{T_{\text{cols}}} \text{Diff}(x + i, y + j, i, j)
 \]

 \[
 \text{Diff}(x, y, i, j) = \text{template}(x + i)\text{image}(y + j) - \text{template}(x)\text{image}(y)
 \]

 \[
 \text{template}(x)\text{image}(y) = \begin{cases} 1 & \text{if template and image overlap} \\ 0 & \text{otherwise} \end{cases}
 \]

Problems: high computation time
 + handling of luminosity&contrast variations
 + handling of orientation variation, and of deformation
For objects with **standardized** (e.g. *Traffic Signs*) or **specific color** (e.g. *skin*)

Principle: \(\approx \) **thresholding in color space**

[color pixels usually coded as 3 intensities for the 3 primary colors Red, Green and Blue]

Problems:
- sometimes many parasite detections
- high variability of color appearance (especially in RGB!)

For objects with **fixed and rather specific shape**

• **Principle:**
 - General case: **template-matching on contours** image
 - For « simple » shapes (lines, circles, polygons like triangles, rectangles,...) efficiently feasible using **Hough transform** (center voting by Canny edges) or **Radon transform**

Problems:
- Rather computer-intensive
- Some shape are not so rare (rectangles!!)
Multi-scale detection by Window-scanning with classifier

Principle:

- Build a **pyramid of down-sampled images**
- Scan each level of pyramid with a **sliding fixed-size detection window** ➔ tens of thousands of sub-images
- Apply a single common classifier on all sub-images to determine if it is a bounding-box around searched object

Kind of Template-matching using classifier output as similarity measure

Objects visual **detection by KEYPONTS**

Keypoint = « salient » point (e.g. corners, etc)
- Detection by Harris or SIFT or SURF or FAST or …
- Description by SIFT/SURF/ORB/…

Detector should ideally be « **repeatable** » i.e. select **same points whatever the scale, rotation, lighting**…

Descriptor should ideally be **invariant under change of scale/rotation/lighting/…**

So that several keypoints can always be matched
Keypoints
detectors and descriptors

Very large number of variants of detectors and descriptors successively invented over time

Detectors
- 1988: Harris
- 1999: SIFT
- 2006: SURF, FAST
- 2011: ORB

Descriptors
- 1999: SIFT
- 2006: SURF
- 2010: BRIEF
- 2011: ORB

SIFT = Scale Invariant Feature Transform
SURF = Speeded Up Robust Features
FAST = Features from Accelerated Segment Test
BRIEF = Binary Robust Independent Elementary Features
ORB = Oriented FAST and Rotated BRIEF

SIFT keypoints

Scale Invariant Feature Transform
classified by Lowe in 1999

Detector
Max and mins of Difference of Gaussians (DoG) applied in scale space to a series of smoothed and resampled images.

Descriptor
Summarizes spatial distribution of gradient orientations around keypoint in a 128D vector.
SURF keypoints

Speeded Up Robust Features

proposed by Bay et al. in 2006

Detector: approximation with Haar filters of blob detection by determinant of Hessian (→ speed-up with integral image)

Descriptor: based on Haar filters responses around keypoint

Much faster to compute than SIFT (but « blob » keypoints rather than corners)

Keypoints matching and filtering

- Precompute keypoints *locations and descriptors* on object to find
- Compute keypoints locations and descriptors on « query » (image where we search object)
- Find keypoints in query with descriptors similar to a keypoint in object
- Filter false matches by geometric checking (RANSAC)

Advantage: intrinsically multi-scale search, thanks to scale invariance of keypoint detector and descriptor

Problem: can search/find only a *specific* image pattern
Keypoints categorization

If looking for objects of a CATEGORY (rather than a particular pattern/sub-image), need to first build a filter for discriminating keypoints that are specific of the type of searched objects

• Extract keypoints on many examples of each category (car, pedestrian, etc...)

• Train a classifier on a labelled dataset of *keypoints descriptors*, that predicts category_of_object = f(descriptor)

Objects category visual detection by keypoints

[Result of research conducted by the center for Robotics of MINES ParisTech]
Detection = find WHERE in the image are (maybe) located interesting objects

Detection is a first stage often applied before recognition (which is then applied only on candidate objects output by detection)

Visual objects detection can be done using various types of approaches:
- Template matching
- Shape cues
- Color cues
- Window scanning with classifier
- Keypoints matching

Outline

• Motivations: ADAS and autonomous driving
• Objects visual DETECTION
• Objects visual RECOGNITION:
 • usual features used
 • Machine-Learning algorithms
• Traffic Sign Detection and Recognition (TSR)
• Cars & Pedestrians detection with adaBoost
Robust visual recognition requires independance wrt:
- Image size
- Centering small offsets
- Rotations (at least small ones)
- Luminosity & contrast

Generally NOT input pixels directly into classifier, but rather use « FEATURES » computed on image to be classified

Main feature types:
- Histogram of pixel luminance or color
- ...
- Histogram of Orientations of Gradients (HOG)
- Keypoint descriptors, Bag of Word (BoW)
Luminance or color

Histogram features

Problems:
• High variability with luminosity/contrast
 ➔ normalize (histogram equalization)
 ➔ other color space (YUV, HSV, …)
• Often not sufficiently discriminative

The Viola & Jones features for object detection: Haar-like filters

4 rectangular feature types:
 – two-rectangles feature types
 (horizontal/vertical)
 – three-rectangles feature type
 – four-rectangles feature type

Feature output:
\[\Sigma \text{(pixels in grey rectangles)} \]
\[- \Sigma \text{(pixels in white rectangles)} \]
HOG features

Histogram of Orientations of Gradients
popularized by Dalal & Triggs in 2005

Principle:
- Computation of vertical and horizontal gradients with 1D derivative masks $[-1 \ 0 \ 1]$ and $[-1 \ 0 \ 1]^T$
- Accumulation (weighted by gradient magnitude) of gradient orientations in cell bins
- Normalization within overlapping blocks

HOG descriptor details

Parameters:
- Cell size (in pixels)
- Number of histogram bins for each cell
- Block size (in cells)

Characterize distribution of contours’ orientations
Bag-of-(visual) Words (BoW)

Inspired from text analysis in which a piece of text is represented by a sparse vector of the number of occurrences of each word of a dictionary

Adapted to images using keypoints descriptors as a representation of image content:

- descriptor vectors are quantized (usually by K-means partitioning) into a codebook of « visual words »
- An (sub-)image is represented by an histogram of codebook occurrences

Summary on VISUAL FEATURES

- Visual features are characteristics computed on an image to be classified, that describe its content, and will be fed into classifier for recognition
- Common types of visual features include:
 - Histogram of pixel luminance or color
 - Haar-like filters
 - Histogram of Orientations of Gradients (HOG)
 - Keypoint descriptors, Bag of Word (BoW)
• Motivations: ADAS and autonomous driving
• Objects visual **DETECTION**
• Objects visual **RECOGNITION**:
 - usual *features* used
 - Machine-Learning algorithms
• Traffic Sign Detection and Recognition (TSR)
• Cars & Pedestrians detection with adaBoost

Object visual **RECOGNITION / CATEGORIZATION

- **RECOGNITION** = determine WHAT are the detected objects (ie assign a type/class to each one)
- It is therefore a *classification task*: for traffic sign recognize its type (eg Speed Limit to 50 km/h), and for other objects CATEGORIZE them as car / pedestrian / bicycle etc (or false alarm)
- Classifiers are generally obtained by applying a Machine-Learning algorithm on *visual features* computed on candidate sub-image (rather than on raw pixels)
What is statistical Machine-Learning (ML)?

(Statistical) **Machine Learning** = Building an empirical (i.e. data-driven) mathematical model, for automated classification, regression, clustering, or behavior rule.

Most simple « Machine-Learning » example:

Least Squares Linear Regression

= find a and b minimizing $K = \sum_i (y_i - a \cdot x_i - b)^2$

so that (straight) line $y = ax + b$ fits the points.

For objects visual recognition or categorization:

![Pedestrians « non-pedestrians »](image)

Supervised Machine-Learning

Examples (input-output)

$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

H (parameterized) family of mathematical models

Hyper-parameters for training algorithm

LEARNING ALGORITHM

(usually based on optimization technique)

$h \in H$

so that $h(x_i) \approx y_i$

Optimization methods used by ML include:

- Gradient descent
- Quadratic programming
- Decision tree inference

...
ML (shallow) algorithms for visual object recognition

Main shallow (ie not-deep) Machine-Learning algorithms used:

– MLP Neural Networks
– Support Vector Machines (SVM)
– Random Forests
– Boosting

Multi-Layer Neural Networks (MLP)

One neuron

\[O_j = f \left(W_{0j} + \sum_{i=1}^{n_i} W_{ij} e_i \right) \]

Non-linear transform (Linear combination of inputs)
Free parameters: set of « synaptic weights » \(W_{ij} \)

Network: usually 1 input layer + 1 hidden layer + 1 output layer
Main parameter: size of hidden layer

Input: vector of features

Output: typically, 1 per class
(with 1-vs-all encoding, and actual values ~ probabilities)

Training: random initialization of \(W_{ij} \) weights
+ Iterative gradient descent minimizing error function

\[E(W) = \sum_{p} \left(Y_p - D_p \right)^2 \]
MLP training hyper-parameters

Architecture:
- usually 1 input layer + **ONLY 1 hidden layer** + 1 output layer
- Main parameter: size (number of neurons) of hidden layer

Optimization:
- **Type of gradient descent algorithm**
- Main parameter for *standard* gradient: learning step + momentum*
- Number of iterations

Linear Support Vector Machines (SVM)

Provide *optimal (maximal margin) hyperplane separator* in input space

![Support Vectors](image)

Training: quadratic programming to solve convex optimization

\[
\begin{align*}
\arg\min_{\mathbf{w}, b} \quad & \max_{\alpha \geq 0} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N_S} \alpha_i [y_i (\mathbf{w} \cdot \mathbf{x}_i) - b] - 1 \right\} \\
\text{Linear SVM output:} & \quad h(X) = b + \sum_{i=1}^{N_S} \beta_S(i) X \cdot X_S(i) = b + X \cdot \left(\sum_{i=1}^{N_S} \beta_S(i) X_S(i) \right) \quad \text{with} \quad X_S(i) = \text{Support Vectors}
\end{align*}
\]
Classes are often NOT linearly separable. But linear SVM can be applied in a \textit{transformed} space in which classes are hopefully linearly separable.

Kernel “trick”: use a transform $\Phi(X)$ \textit{implicitly} defined by $\Phi(X_1) = k(X_1, X_2)$ [with $k = \text{KERNEL}$]

\[\begin{align*}
\Rightarrow \text{Training same as linear SVM, with just replacing } w.x_i \text{ by } k(w, x_i) \\
\text{arg min}_{w,b} \max_{\alpha \geq 0} \left\{ \frac{1}{2} \|w\|^2 - \sum_{i=1}^{N} \alpha_i \left[y_i \left(k(w, x_i) - b \right) - 1 \right] \right\}
\end{align*} \]

Non-linear SVM output: $h(X) = \sum_{i=1}^{N_S} \beta_{s(i)} k(X_{s(i)}^s, X) + b$ \textbf{with} $X_{s(i)}^s$ \textbf{Support Vectors}

SVM training hyper-parameters

Kernel:
- Type (linear or polynomial or Gaussian)
- Kernel param (degree for polynomial, sigma for Gaussian)

Optimization:
- \textit{tolerance} parameter C !!!
A Random Forest is a set of N Decision Trees (typically $N \sim$ tens, hundreds or more).

Each Decision Tree is learnt on a random subset of training examples, using only a randomly chosen and small set of coordinates.

The output of the Random Forest is the majority vote by all trees.

Random Forest training hyper-parameters:
- Size = number of trees
- Max-depth of trees
- Randomization:
 - $\%$ of randomly chosen training examples for each tree
 - $\%$ of random input coordinates used in each tree
Boosting

adaBoost principle: weighted vote of a "committee" of "weak classifiers" obtained by successive weightings of examples

step 1 Decrease (resp. increase) weight of examples correctly (resp. incorrectly) classified by last weak classifier

step 2

step 3

Strong classifier

Final STRONG classifier:

\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \]

AdaBoost Algorithm

[Freund & Schapire 1995]

Given: \((x_1, y_1), \ldots, (x_m, y_m) \) with: \(x_i \in X, y_i \in Y = \{-1, +1\} \)

Initialize weights with:

\[D_1(i) = \frac{1}{m}. \]

For \(t = 1, \ldots, T \):

- In features family, find \(h_t: X \rightarrow \{-1, +1\} \) minimizing error (weighted using \(D_t(i) \) for examples)

\[h_t = \arg \min_{h_j \in \mathcal{H}} \epsilon_j = \sum_{i=1}^{m} D_t(i) |y(i) \neq h_j(x(i))| \]

- Check if \(\epsilon_t < 0.5 \), otherwise STOP

- Evaluate weak-classifier with weak-learner

\[\alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t} \]

Adaptation of example weights:

- for those incorrectly classified by \(h_t \)

- for those correctly classified by \(h_t \)

Final STRONG classifier:

\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \]
Weak-Learner:
Algo used?
If feature selection, which family (Haar, HOG, controlPoints)?

Number of Weak-Classifiers to assemble

Comparison of main “shallow” ML algorithms

<table>
<thead>
<tr>
<th></th>
<th>MLP Neural Network</th>
<th>SVM</th>
<th>Boosting</th>
<th>Random Forest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many classes</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>Large dimension of input</td>
<td>-</td>
<td>--</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Many examples</td>
<td>-</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy to train</td>
<td>-</td>
<td>++</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Feature handling</td>
<td></td>
<td></td>
<td>Selection</td>
<td></td>
</tr>
<tr>
<td>Fast recognition</td>
<td>+</td>
<td></td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Robustness to data noise</td>
<td>+</td>
<td>++</td>
<td></td>
<td>++</td>
</tr>
</tbody>
</table>

Choice of a particular ML model/algorithm should ideally be done empirically: try all of them and keep best performing!
It can also be influenced by characteristics of training data (# of classes, dimension of input, # of examples), by relative ease of training, and by execution speed of recognition.
Different types of classification errors

<table>
<thead>
<tr>
<th></th>
<th>predicted as positive</th>
<th>predicted as negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td>negative</td>
<td>FP</td>
<td>TN</td>
</tr>
</tbody>
</table>

False Negatives (« missed ») vs False Positives

Recall: percentage of relevant examples successfully predicted/retrieved

Precision: percentage of actually relevant examples among all those returned by the classifier

Recall and precision formulas

Recall (sensitivity) = \[
\frac{\text{Nb of correct positive predictions}}{\text{Nb of real positives}} = \frac{TP}{TP + FN}
\]

Precision (specificity) = \[
\frac{\text{Nb of correct positive predictions}}{\text{Nb of positive predictions}} = \frac{TP}{TP + FP}
\]
Classification performance metrics

- **Recall (sensitivity)** \approx proportion of « not missed »
 \approx « exhaustivity » level

- **Precision (specificity)** \approx reliability of predicted labels

- **Confusion matrix**: predicted label v.s. true label

Example of Confusion Matrix

<table>
<thead>
<tr>
<th>C.Matrix</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>ACTUAL</th>
<th>RECALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>339</td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>359</td>
<td>94.43%</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>305</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>334</td>
<td>91.32%</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>242</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>258</td>
<td>93.80%</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>302</td>
<td>30</td>
<td>0</td>
<td>332</td>
<td>90.96%</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>368</td>
<td>0</td>
<td>0</td>
<td>383</td>
<td>96.08%</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>394</td>
<td>394</td>
<td>2060</td>
<td>94.43%</td>
</tr>
<tr>
<td>PREDICTED</td>
<td>360</td>
<td>330</td>
<td>261</td>
<td>317</td>
<td>398</td>
<td>394</td>
<td>2060</td>
<td>94.43%</td>
</tr>
<tr>
<td>PRECISION</td>
<td>94.17%</td>
<td>92.42%</td>
<td>92.72%</td>
<td>95.27%</td>
<td>92.46%</td>
<td>100.00%</td>
<td>94.51%</td>
<td>94.66%</td>
</tr>
</tbody>
</table>

Objects visual detection recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019

Precision-recall trade-off and curve

Classifier C1 predicts better than C2
iff C1 has better recall *and* precision

+ Trade-off between recall and precision

⇒ Compare precision-recall curves!

For numeric comparison (or if curves cross each other),
Area Under Curve (AUC)
Notion and importance of GENERALIZATION

« LEARNING = INFER/APPROXIMATE + GENERALIZE !! »

Given a FINITE set of examples \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), where \(x_i \in \mathbb{R}^d\) are input vectors, and \(y_i \in \mathbb{R}^s\) are target output values, we search a function \(h\) that « fits AND GENERALIZE best » the underlying actual function \(f\) defined by \(y_i = f(x_i) + \text{noise}\)

\[\Rightarrow \text{goal} = \text{minimize the GENERALIZATION error} \]

\[E_{\text{gen}} = \int ||h(x) - f(x)||^2 p(x) \, dx \]

(where \(p(x)\) is the probability distribution of \(x\))

What is « overfitting »?

What can be measured (and minimized!) is only the EMPIRICAL error on examples:

\[E_{\text{emp}} = \frac{\left(\sum_i ||h(x_i) - y_i||^2 \right)}{n} \]

Over-fitting detection for an iterative algorithm

Fitting a data set to different orders of polynomials
[from Bishop, "Pattern Recognition and Machine Learning"]

Objects visual detection & recognition for Intelligent Vehicles, Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept. 2019
Training methodology: ALWAYS use validation-set or cross-validation!

For maximizing GENERALIZATION (and avoid overfitting), it is essential to choose/optimize all training parameters with VALIDATION:

– either with a separate validation set (random splitting of examples into Training+Validation)

– or with CROSS-VALIDATION:
 estimate error on several subsets used as validation (k-fold or « leave-one-out »), then average errors

3-fold cross-validation:
- train on S1∪S2 and evaluate on S3
- train on S1∪S3 and evaluate on S2
- train on S2∪S3 and evaluate on S1
- Average (errS1, errS2, errS3)

Summary on shallow Machine-Learning algorithms for visual objects recognition

- Visual recognition is generally performed using Machine-Learning (ML) applied on visual features
- ML = Building an empirical (i.e. data-driven) mathematical model, eg for automated classification
- Main shallow ML algorithms used for visual object recognition include:
 – MLP Neural Networks
 – Support Vector Machines (SVM)
 – Random Forests
 – adaBoost
Outline

- Motivations: ADAS and autonomous driving
- Objects visual **DETECTION**
- Objects visual **RECOGNITION**:
 - usual *features* used
 - Machine-Learning algorithms
- Traffic Sign Detection and Recognition (TSR)
- Cars & Pedestrians detection with adaBoost

Traffic Signs

Shape, colors and pictograms \(\approx\) standardized (but national variations & totally different in USA...)
Traffic Sign detection and Recognition

3 main steps:

1. Where are traffic signs?
 \textit{Detection} by color or/and shape

2. What traffic sign is it?
 Use pattern \textit{recognition} (\textit{require use of some Machine-Learning})

3. Temporal integration (\textit{tracking})
 Position prediction, better confidence estimation, and handle temporary occlusions

Main challenges:

- real-time detection (signs are small !)
- robustness to illumination changes

Traffic Signs \textbf{DETECTION}

- Often done by \textbf{COLOR THRESHOLDING}
 \textit{fast, but poor robustness to illumination changes}

- Alternative or complement: \textbf{SHAPE DETECTION}
 (circles, triangles, rectangles) \textbf{using Hough}
 \textit{robust, and OK even on greyscale,}
 \textbf{BUT} very computer-intensive if \textit{not} optimized

- \textit{Best = using COLOR AND SHAPE}
 Color \rightarrow \textit{candidate regions}
 \textbf{Shape detection restricted to those regions}
Traffic Sign RECOGNITION (TSR)

- Very little intrinsic variation of object
 - main recognition challenge = *robustness to illumination & contrast changes + small 3D rotations*

- Large number of classes (~100)

- Input feature for classification?
 - Vector of pixel values??
 - HoG (Histogram of Orientations of Gradients)
 - ...

- ML algo used: *Neural Nets, Random Forest*, boosting, SVM (but 2 last = BINARY classifiers → less convenient)

MINES_ParisTech’s approach for Traffic Sign Recognition (TSR)

[Work by former PhD student Fatin Zaklouta]

German Traffic Sign Recognition benchmark (GTSRb)

- 43 classes, 26640 training images
- 2569 test images

Machine-Learning algorithm used: *random forest*

Principle: 1/ Grow large (typically 500) set of "random" trees, with each node testing 1 of the 1000-3000 HoG components (node = best split); 2/ Labels of leaves computed based on most frequent class of training examples ending in it; 3/ *Classify by majority vote of trees*

Best student paper @ICAR’2011

3rd best competition result: 96,1% (vs 99,5% and 98,3%)
Outline

- Motivations: ADAS and autonomous driving
- Objects visual *DETECTION*
- Objects visual *RECOGNITION*:
 - usual *features* used
 - Machine-Learning algorithms
- Traffic Sign Detection and Recognition (TSR)
- Cars & Pedestrians detection with adaBoost
Main challenge: very large intra-class variability!!

- Requires LARGE dataset of examples

(N ≥ 10³-10⁴ positives + ≥ 10⁴-10⁵ negatives)

Machine-Learning → Image classifier

+ Detection by window-scanning → classifier must be FAST

Integral image

- Definition: The integral image at location \((x,y)\), is the sum of the pixel values above and to the left of \((x,y)\), inclusive.
- It can be computed in one single pass with nb_pixels additions.

Using the integral image representation one can compute the value of any rectangular sum in constant time. For example the integral sum inside rectangle D we can compute as:

\[ii(4) + ii(1) - ii(2) - ii(3) \]

→ VERY FAST COMPUTATION of ViolaJones features
Boosting as feature selection (and weighting)

\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \]

Idea of Viola&Jones in 2001: use as weak classifier very simple boolean features selected in a family (e.g. all Haar-like features) ⇔ Weak Learner = search of feature with lowest weighted error

Using a 24x24 pixels detection window, with all possible combinations of horizontal&vertical location and scale of Haar, the full set of features has 45,396 ≠ features (and ~10 times more in a 32x32 window) ⇒ brute-force exhaustive search possible!

Speed-up by « Attentional » Cascade

• Simple, boosted classifiers can reject many negative sub-windows and still detect all positive instances
• Cascade of progressively more complex classifiers ⇒ good detection performance with less processing (most negative sub-windows eliminated by simplest classifiers at beginning of cascade)
« Success story »: now standard face-detection approach

Result of multi-scale window-scanning with strong classifier obtained by boosting of Haar filters (Viola&Jones, 2001)

Main families of Weak Classifiers for boosting

- **Haar-like (Viola-Jones)** = most commonly used features

 ![Haar-like Features](image)

 - Relatively fast computation with integral image
 - Mostly based on horizontal/vertical contrasts

 Some work showed improved results with extended feature set [Treptow & Zell, CEC’2004]

- **HOG (Histogram of Oriented Gradient)** – based features

 [Zhu et al., CVPR’2006, Mitsubishi] [Pettersson et al., IV’2008, NICTA]

 - More detailed/discriminative information
 - Tricky to make it fast enough
 - Not so good results on object classes with too shallow gradients

- **Pixel-pairs comparisons**

 [Baluja et al., ICIP’2004, Google/CMU] [Leyrit et al., IV’2008, LASMEA]

 - Extremely low computation time
 - Less discriminative ➔ more WC, or more complex classif required

- **Control-points features** [CAOR/Mines ParisTech work since 2004]
Outcome of boosting with ≠ feature families

Typical connected-Control-Points selected during Adaboost training

For comparison, typical Adaboost-selected Haar features

Example result of car & pedestrian detection with boosting

Cars (from behind): ~ 95% detection with < 1 false alarm / image

Pedestrian (daytime): ~80% detection with < 2 false alarms / image

[Research conducted @ center for Robotics of MINES ParisTech]
Until outbreak in 2013 of Deep-Learning with Convolutional Neural Networks, state-of-the-art in real-time visual object detection and recognition or categorization for Intelligent Vehicles was:

- For Traffic Signs, Color and/or Shape detection + Random Forest recognition
- For more complex/variable categories (cars, pedestrians, etc…) boosting selection of weak features, or SVM classification using HOG

These techniques are still those used in most already existing products

NB: in most cases, fusion with information by processing of input from other sensors: radar, lidar, …

NB: Deep-Learning approaches for visual scene analysis in a separate course